INDUCTIVE REASONING

You use *inductive reasoning* if you reach a conclusion by making particular observations.

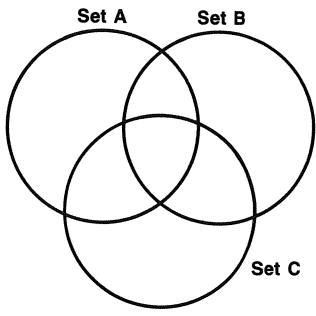
Example:

If a number is divisible by 4, is it divisible by 2?

Examine some cases: 44, 60, 72, 36

Based on these cases, you should say, "Yes!" In fact, if the number is divisible by 4, then the ones digit is even (divisible by 2). Note: This is a conjecture only, not a proof!

For each statement below, examine five cases. Make a conjecture of "yes" or "no."	Yes/No
1. If a number is divisible by 2 and 5, is it divisible by 7?	#
2. If a number is divisible by 8, is it divisible by 4?	
3. If a number is divisible by 10, is it divisible by 5?	
4. If a number is divisible by 3, is it divisible by 9?	
5. If a number is divisible by 2 and 4, is it divisible by 8?	
6. If a number is divisible by 2 and 4, is it divisible by 6?	
7. If a number is divisible by 2 and 8, is it divisible by 16?	***************************************
8. If a number is divisible by 4 and 8, is it divisible by 12?	
9. If a number is divisible by 3 and 4, is it divisible by 12?	****
10. If a number is divisible by 5 and 3, is it divisible by 15?	***************************************
11. If a number is divisible by 9 and 2, is it divisible by 11?	
12. If a number is divisible by 9 and 2, is it divisible by 18?	
13. If a number is divisible by 2 and 7, is it divisible by 9?	
14. If a number is divisible by 2 and 7, is it divisible by 14?	
15. If a number is divisible by 3 and 6, is it divisible by 18?	


VENN DIAGRAMS

Use the given information to place numbers in the Venn diagram. Answer the questions and write the numbers where they belong.

Set A represents even numbers less than 40.

Set B represents prime numbers less than 40.

Set C represents odd numbers less than 30.

1.	Where does 17 belong in this diagram?
2.	Where does 36 belong in this diagram?
3.	The number 2 belongs to set and set
4.	Where does 37 belong in this diagram?
5.	The number 28 belongs to set
6.	Where does 27 belong?
7.	Where does 23 belong?
8.	Where does 6 belong?
	What is the least number that is a member of set A only?
	What number belongs in the space that sets A, B, and C have in common?
1.	What is the greatest number that is an element of set B only?
	What is the least number that belongs to both sets B and C2